28 research outputs found

    Isolation, identification and bioactive potential of bacterial endophytes from Coleus

    Get PDF
    Coleus (Lamiaceae) is a large and widespread genus comprising of species with diverse ethnobotanical uses. In the present study, bacterial endophytes were isolated from Coleus forskohlii and Coleus aromaticus. Endophytes are the microorganisms which reside within the plants without showing any harmful effect on its host. Diverse types of endophytes live symbiotically within almost all plants and in turn help the plant in a number of ways such as imparting resistance against biotic and abiotic stresses, producing compounds involved in attraction of pollinators, inducing the plant defense mechanisms, etc. The bacterial endophytes isolated in this study, were characterized by microscopic examination (using gram staining) and molecularly identified by sequencing the 16S rRNA. Extracts were prepared from endophytic biomass using solvents of different polarities (methanol, ethyl acetate and butanol) and were screened for their bioactive potential (in vitro cytotoxicity anti-microbial, and anti-oxidant activity). Scale-up of endophytes showing promising results is under process, which will help in isolation of pure compounds

    A Scoping Review and Preliminary Illustrative Analysis of Biomarkers in Stress-Related Psychiatric Illness: Diagnostic and Prognostic Implications

    Get PDF
    Stress is the body's response to any changes that might place it under mental, emotional, or physical strain and could either demand attention or prompt action. A stress reaction can be brought on by both internal and external factors. The conditions, demands, issues, and expectations you deal with every day are all regarded as external influences, as are your physical surroundings, your job, your contacts with others, your family, and all other related factors. The ability of your body to respond to and handle external stimuli depends on internal factors. Your ability to handle stress is influenced internally by your food habits, level of general health and fitness, mental health, and the amount of sleep and rest you get. Such demanding conditions could affect how certain stress hormone levels are regulated. Biomarkers such as mGlu2/3, 5-hydroxyindoleacetic acid (5-HIAA), serum alpha-amylase, amygdala reactivity, neuropeptide Y (NPY), heat shock proteins, cortisol, and catecholamines are used to assess the hormone imbalance. Disease prevention, early detection, and therapy are all possible uses for biomarkers. In this review, we looked at a wide range of stress-related biomarkers that might cause different psychiatric illnesses and how those conditions can, over time, alter a person's lifestyle

    The malleable brain: plasticity of neural circuits and behavior: A review from students to students

    Get PDF
    One of the most intriguing features of the brain is its ability to be malleable, allowing it to adapt continually to changes in the environment. Specific neuronal activity patterns drive long-lasting increases or decreases in the strength of synaptic connections, referred to as long-term potentiation (LTP) and long-term depression (LTD) respectively. Such phenomena have been described in a variety of model organisms, which are used to study molecular, structural, and functional aspects of synaptic plasticity. This review originated from the first International Society for Neurochemistry (ISN) and Journal of Neurochemistry (JNC) Flagship School held in Alpbach, Austria (Sep 2016), and will use its curriculum and discussions as a framework to review some of the current knowledge in the field of synaptic plasticity. First, we describe the role of plasticity during development and the persistent changes of neural circuitry occurring when sensory input is altered during critical developmental stages. We then outline the signaling cascades resulting in the synthesis of new plasticity-related proteins, which ultimately enable sustained changes in synaptic strength. Going beyond the traditional understanding of synaptic plasticity conceptualized by LTP and LTD, we discuss system-wide modifications and recently unveiled homeostatic mechanisms, such as synaptic scaling. Finally, we describe the neural circuits and synaptic plasticity mechanisms driving associative memory and motor learning. Evidence summarized in this review provides a current view of synaptic plasticity in its various forms, offers new insights into the underlying mechanisms and behavioral relevance, and provides directions for future research in the field of synaptic plasticity.Fil: Schaefer, Natascha. University of Wuerzburg; AlemaniaFil: Rotermund, Carola. University of Tuebingen; AlemaniaFil: Blumrich, Eva Maria. Universitat Bremen; AlemaniaFil: Lourenco, Mychael V.. Universidade Federal do Rio de Janeiro; BrasilFil: Joshi, Pooja. Robert Debre Hospital; FranciaFil: Hegemann, Regina U.. University of Otago; Nueva ZelandaFil: Jamwal, Sumit. ISF College of Pharmacy; IndiaFil: Ali, Nilufar. Augusta University; Estados UnidosFil: García Romero, Ezra Michelet. Universidad Veracruzana; MéxicoFil: Sharma, Sorabh. Birla Institute of Technology and Science; IndiaFil: Ghosh, Shampa. Indian Council of Medical Research; IndiaFil: Sinha, Jitendra K.. Indian Council of Medical Research; IndiaFil: Loke, Hannah. Hudson Institute of Medical Research; AustraliaFil: Jain, Vishal. Defence Institute of Physiology and Allied Sciences; IndiaFil: Lepeta, Katarzyna. Polish Academy of Sciences; ArgentinaFil: Salamian, Ahmad. Polish Academy of Sciences; ArgentinaFil: Sharma, Mahima. Polish Academy of Sciences; ArgentinaFil: Golpich, Mojtaba. University Kebangsaan Malaysia Medical Centre; MalasiaFil: Nawrotek, Katarzyna. University Of Lodz; ArgentinaFil: Paid, Ramesh K.. Indian Institute of Chemical Biology; IndiaFil: Shahidzadeh, Sheila M.. Syracuse University; Estados UnidosFil: Piermartiri, Tetsade. Universidade Federal de Santa Catarina; BrasilFil: Amini, Elham. University Kebangsaan Malaysia Medical Centre; MalasiaFil: Pastor, Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia ; ArgentinaFil: Wilson, Yvette. University of Melbourne; AustraliaFil: Adeniyi, Philip A.. Afe Babalola University; NigeriaFil: Datusalia, Ashok K.. National Brain Research Centre; IndiaFil: Vafadari, Benham. Polish Academy of Sciences; ArgentinaFil: Saini, Vedangana. University of Nebraska; Estados UnidosFil: Suárez Pozos, Edna. Instituto Politécnico Nacional; MéxicoFil: Kushwah, Neetu. Defence Institute of Physiology and Allied Sciences; IndiaFil: Fontanet, Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia ; ArgentinaFil: Turner, Anthony J.. University of Leeds; Reino Unid

    Neuroprotective potential of quercetin in combination with piperine against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity

    No full text
    1-Methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin that selectively damages dopaminergic neurons in the substantia nigra pars compacta and induces Parkinson's like symptoms in rodents. Quercetin (QC) is a natural polyphenolic bioflavonoid with potent antioxidant and anti-inflammatory properties but lacks of clinical attraction due to low oral bioavailability. Piperine is a well established bioavailability enhancer used pre-clinically to improve the bioavailability of antioxidants (e.g., Quercetin). Therefore, the present study was designed to evaluate the neuroprotective potential of QC together with piperine against MPTP-induced neurotoxicity in rats. MPTP (100 μg/μL/rat, bilaterally) was injected intranigrally on days 1, 4 and 7 using a digital stereotaxic apparatus. QC (25 and 50 mg/kg, intragastrically) and QC (25 mg/kg, intragastrically) in combination with piperine (2.5 mg/kg, intragastrically) were administered daily for 14 days starting from day 8 after the 3rd injection of MPTP. On day 22, animals were sacrificed and the striatum was isolated for oxidative stress parameter (thiobarbituric acid reactive substances, nitrite and glutathione), neuroinflammatory cytokine (interleukin-1β, interleukin-6, and tumor necrosis factor-α) and neurotransmitter (dopamine, norepinephrine, serotonin, gamma-aminobutyric acid, glutamate, 3,4-dihydroxyphenylacetic acid, homovanillic acid, and 5-hydroxyindoleacetic acid) evaluations. Bilateral infusion of MPTP into substantia nigra pars compacta led to significant motor deficits as evidenced by impairments in locomotor activity and rotarod performance in open field test and grip strength and narrow beam walk performance. Both QC (25 and 50 mg/kg) and QC (25 mg/kg) in combination with piperine (2.5 mg/kg), in particular the combination therapy, significantly improved MPTP-induced behavioral abnormalities in rats, reversed the abnormal alterations of neurotransmitters in the striatum, and alleviated oxidative stress and inflammatory response in the striatum. These findings indicate that piperine can enhance the antioxidant and anti-inflammatory properties of QC, and QC in combination with piperine exhibits strong neuroprotective effects against MPTP-induced neurotoxicity

    Age-associated sex difference in the expression of mitochondria-based redox sensitive proteins and effect of pioglitazone in nonhuman primate brain

    No full text
    Abstract Background Paraoxonase 2 (PON2) and neuronal uncoupling proteins (UCP4 and UCP5) possess antioxidant, anti-apoptotic activities and minimize accumulation of reactive oxygen species in mitochondria. While age and sex are risk factors for several disorders that are linked with oxidative stress, no study has explored the age- and sex-dependent expression of PON2 isoforms, UCP4 and UCP5 in primate brain or identified a drug to activate UCP4 and UCP5 in vivo. Preclinical studies suggest that the peroxisome proliferator-activated receptor gamma agonist, pioglitazone (PIO), can be neuroprotective, although the mechanism responsible is unclear. Our previous studies demonstrated that pioglitazone activates PON2 in primate brain and we hypothesized that pioglitazone also induces UCP4/5. This study was designed to elucidate the age- and sex-dependent expression of PON2 isoforms, UCP4 and UCP5, in addition to examining the impact of systemic PIO treatment on UCP4 and UCP5 expression in primate brain. Methods Western blot technique was used to determine the age- and sex-dependent expression of UCP4 and UCP5 in substantia nigra and striatum of African green monkeys. In addition, we tested the impact of daily oral pioglitazone (5 mg/kg/day) or vehicle for 1 or 3 weeks on expression of UCP4 and UCP5 in substantia nigra and striatum in adult male monkeys. PIO levels in plasma and cerebrospinal fluid (CSF) were determined using LC–MS. Results We found no sex-based difference in the expression of PON2 isoforms, UCP4 and UCP5 in striatum and substantia nigra of young monkeys. However, we discovered that adult female monkeys exhibit greater expression of PON2 isoforms than males in substantia nigra and striatum. Our data also revealed that adult male monkeys exhibit greater expression of UCP4 and UCP5 than females in substantia nigra but not in striatum. PIO increased UCP4 and UCP5 expression in substantia nigra and striatum at 1 week, but after 3 weeks of treatment this activation had subsided. Conclusions Our findings demonstrate a sex-, age- and region-dependent profile to the expression of PON2, UCP4 and UCP5. These data establish a biochemical link between PPARγ, PON2, UCP4 and UCP5 in primate brain and demonstrate that PON2, UCP4 and UCP5 can be pharmacologically stimulated in vivo, revealing a novel mechanism for observed pioglitazone-induced neuroprotection. We anticipate that these outcomes will contribute to the development of novel neuroprotective treatments for Parkinson’s disease and other CNS disorders

    Beneficial effect of rice bran extract against 3-nitropropionic acid induced experimental Huntington's disease in rats

    Get PDF
    Huntington's disease (HD) is a neurodegenerative disorder, characterized by progressive motor and non-motor dysfunction due to degeneration of medium spiny neurons in striatum. 3-Nitropropionic acid is commonly used to induce the animal model of HD. Rice bran is supposed to have beneficial effects on mitochondrial function. The present study has been designed to explore the effect of rice bran extract against 3-Nitropropionic acid induced neurotoxicity in rats. 3-Nitropropionic acid (10 mg/kg, i.p) was administered systemically for 21 days. Hexane and ethanol extract of rice bran were prepared using Soxhlation. Hexane (250 mg/kg) and ethanol extract (250 mg/kg) were administered per os for 21 days in 3-NP treated groups. Behavioral parameters (body weight, grip strength, motor coordination, locomotion) were conducted on 7th, 14th and 21st day. Animals were sacrificed on 22nd day for biochemical, mitochondrial dysfunction (Complex II), neuroinflammatory and neurochemical estimation in striatum. This study demonstrates significant alteration in behavioral parameters, oxidative burden (increased lipid peroxidation, nitrite concentration and decreased glutathione), mitochondrial function (decreased Complex II enzyme activity), pro-inflammatory mediators and neurochemical levels in 3-nitropropionic acid treated animals. Administration of hexane and ethanol extract prevented the behavioral, biochemical, neuroinflammatory (increased TNF-α, IL-1β and IL-6) and neurochemical alterations (decreased dopamine, norepinephrine, serotonin, 5-hydroxy indole acetic acid, GABA and increased 3,4-dihydro phenyl acetaldehyde, homovanillic acid and glutamate levels) induced by 3-nitropropionic acid. The outcomes of present study suggest that rice bran extract is beneficial and might emerge as an adjuvant or prophylactic therapy for treatment of HD like symptoms

    Changing Rhizosphere Microbial Community and Metabolites with Developmental Stages of <i>Coleus barbatus</i>

    No full text
    Coleus barbatus is a medicinal herb belonging to Lamiaceae. It is the only living organism known to produce forskolin, which is a labdane diterpene and is reported to activate adenylate cyclase. Microbes associated with plants play an important role in maintaining plant health. Recently, the targeted application of beneficial plant-associated microbes and their combinations in abiotic and biotic stress tolerance has gained momentum. In this work, we carried out the rhizosphere metagenome sequencing of C. barbatus at different developmental stages to understand how rhizosphere microflora are affected by and affect the metabolite content in plants. We found that the Kaistobacter genus was abundantly present in the rhizosphere of C. barbatus and its accumulation pattern appears to correlate with the quantities of forskolin in the roots at different developmental stages. Members of the Phoma genus, known for several pathogenic species, were in lower numbers in the C. barbatus rhizosphere in comparison with C. blumei. To our knowledge, this is the first metagenomic study of the rhizospheric microbiome of C. barbatus, which may help to explore and exploit the culturable and non-culturable microbial diversity present in the rhizosphere
    corecore